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Logica en de Linguistic Turn
18 October 2017, 16:15-18:00



Achilles & the Tortoise

Zeno of Elea (5th century BC)

[T]he argument says that it is impossible for [Achilles] to overtake the
tortoise when pursuing it. For in fact it is necessary that what is to
overtake [something], before overtaking [it], first reach the limit from
which what is fleeing set forth. In [the time in] which what is pursuing
arrives at this, what is fleeing will advance a certain interval, even if it is
less than that which what is pursuing advanced ... And thus in every time
in which what is pursuing will traverse the [interval] which what is fleeing,
being slower, has already advanced, what is fleeing will also advance some
amount. (Simplicius, On Aristotle’s Physics, 1014.10)
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Thomson’s Lamp

James F. Thomson, Tasks and Super-Tasks, Analysis 15:1, 1954, 1–13.

There are certain reading-lamps that have a button in the base. If the
lamp is off and you press the button the lamp goes on, and if the lamp is
on and you press the button the lamp goes off. So if the lamp was
originally off, and you pressed the button an odd number of times, the
lamp is on, and if you pressed the button an even number of times the
lamp is off. Suppose now that the lamp is off, and I succeed in pressing
the button an infinite number of times, perhaps making one jab in one
minute, another jab in the next half-minute, and so on. ... After I have
completed the whole infinite sequence of jabs, i.e., at the end of the two
minutes, is the lamp on or off? It seems impossible to answer this
question. It cannot be on, because I did not ever turn it on without at
once turning it off. It cannot be off, because I did in the first place turn it
on, and thereafter I never turned it off without at once turning it on. But
the lamp must be either on or off. This is a contradiction.



































Why should philosophers care about mathematics?

Sir Charles Percy Snow, Baron Snow of Leicester
(1905–1980)

C. P. Snow, The Two Cultures, Cambridge University Press, 1959.

I Philosophy of Science (& more).
Il libro della natura è scritto in lingua matematica. (Galileo Galilei); the
scientific method is mathematical modelling and experiments.

I Metaphysics.
The nature of time: is time infinitely divisible? does it have a beginning and an
end? The nature of space; the relationship between the lingua matematica used
to describe nature and nature itself.

I Epistemology.
The scientific method is inductive; mathematics is deductive. Mathematics as
template for purely rational thought (Ethica, ordine geometrico demonstrata).
Certainty about knowledge.
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Aristotle

potential infinity vs. actual infinity

Can the infinite be present in mathematical objects? We may begin with
a dialectical argument and show as follows that there is no [physical body
which is infinite]. But on the other hand to suppose that the infinite does
not exist in any way leads obviously to many impossible consequences:
there will be a beginning and an end of time, a magnitude will not be
divisible into magnitudes, number will not be infinite. If, then, in view of
the above considerations, neither alternative seems possible, an arbiter
must be called in; and clearly there is a sense in which the infinite exists
and another in which it does not. ... Our definition then is as follows: A
quantity is infinite if it is such that we can always take a part outside
what has been already taken. Phys. III.6

Pieter Sjord Hasper, Aristotle on Infinity, Kolloquium-Vorlesung, Berlin, 2008.
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Bernhard Bolzano (1781-1848)

Paradoxien des Unendlichen (1851)



Definitions of size in mathematics.
If Y ⊆ X , then there are more X than Y if there is a x ∈ X such
that x /∈ Y :

There are more natural numbers than just the even numbers, because I
can show you some odd numbers (actually, infinitely many of them).

If there is a one-to-one correspondence between X and Y , i.e., an
assignment of elements of X to elements of Y such that no two
elements get assigned the same corresponding element, and all
elements of X and Y are assigned a corresponding element, then
there are exactly as many X as Y .

There are as many objects on the left hand side as there are numbers on
the right hand side, since I can match them by a one-to-one
correspondence.
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Bolzano’s paradox

Consider N, the set of all natural numbers and E ⊆ N, the set of all even
numbers. Then there are more natural numbers than even numbers since
1 is a natural number, but not even. But the set of even numbers has the
same size as the set of natural numbers since the assignment

n 7→ 2n

is a one-to-one correspondence between N and E.
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Georg Cantor (1845-1918)

Measuring the size of the infinite

Definitions of size. If Y ⊆ X , then there are more X than Y if there is a x ∈ X such
that x /∈ Y .

If there is a one-to-one correspondence between X and Y , i.e., an assignment of
elements of X to elements of Y such that no two elements get assigned the same
corresponding element, and all elements of X and Y are assigned a corresponding
element, then there are exactly as many X as Y .

Cantor realized that the definitions are asymmetric: to be of the
same size, it is enough to have some one-to-one correspondence
between X and Y , but for X to have more elements that Y , it is
enough that one particular one-to-one correspondence does not
exhaust X .
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Cantor’s definitions of size.

Two sets are said to be of the same size if there is a one-to-one
correspondence between them.

A set Y is said to be smaller than X if for every one-to-one
correspondence between Y and a subset of X there is at least one
x ∈ X that is not in correspondence with an element of Y .

So, E and N are of the same size and none is smaller than the
other.

The box & the red balls. By removing a ball to the rubbish
heap, we create a one-to-one correspondence between the infinite
number of rounds and the set of red balls on the rubbish heap.
The one-to-one correspondence we get when we remove the newest
ball is different from the one we get when we remove the oldest
ball. The different answers to the question about the size of the
remaining balls is related to the properties of the created
one-to-one correspondences.



Cantor’s definitions of size.

Two sets are said to be of the same size if there is a one-to-one
correspondence between them.

A set Y is said to be smaller than X if for every one-to-one
correspondence between Y and a subset of X there is at least one
x ∈ X that is not in correspondence with an element of Y .

So, E and N are of the same size and none is smaller than the
other.

The box & the red balls. By removing a ball to the rubbish
heap, we create a one-to-one correspondence between the infinite
number of rounds and the set of red balls on the rubbish heap.
The one-to-one correspondence we get when we remove the newest
ball is different from the one we get when we remove the oldest
ball. The different answers to the question about the size of the
remaining balls is related to the properties of the created
one-to-one correspondences.



Cantor’s definitions of size.

Two sets are said to be of the same size if there is a one-to-one
correspondence between them.

A set Y is said to be smaller than X if for every one-to-one
correspondence between Y and a subset of X there is at least one
x ∈ X that is not in correspondence with an element of Y .

So, E and N are of the same size and none is smaller than the
other.

The box & the red balls. By removing a ball to the rubbish
heap, we create a one-to-one correspondence between the infinite
number of rounds and the set of red balls on the rubbish heap.
The one-to-one correspondence we get when we remove the newest
ball is different from the one we get when we remove the oldest
ball. The different answers to the question about the size of the
remaining balls is related to the properties of the created
one-to-one correspondences.



Cantor’s definitions of size.

Two sets are said to be of the same size if there is a one-to-one
correspondence between them.

A set Y is said to be smaller than X if for every one-to-one
correspondence between Y and a subset of X there is at least one
x ∈ X that is not in correspondence with an element of Y .

So, E and N are of the same size and none is smaller than the
other.

The box & the red balls. By removing a ball to the rubbish
heap, we create a one-to-one correspondence between the infinite
number of rounds and the set of red balls on the rubbish heap.
The one-to-one correspondence we get when we remove the newest
ball is different from the one we get when we remove the oldest
ball. The different answers to the question about the size of the
remaining balls is related to the properties of the created
one-to-one correspondences.



Not only E and N are of the same size, but also the set N of
natural numbers and the set Q of rational numbers:
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David Hilbert (1862-1943)

Hilbert’s Hotel

Steven Strogatz (New York Times, 9 May 2010): [David Hilbert] vividly
conveyed the strangeness and wonder of Cantor’s theory by telling a
parable about a grand hotel, now known as the Hilbert Hotel. It’s always
booked solid, yet there’s always a vacancy. For the Hilbert Hotel doesn’t
merely have hundreds of rooms—it has an infinite number of them.
Whenever a new guest arrives, the manager shifts the occupant of room 1
to room 2, room 2 to room 3, and so on. That frees up room 1 for the
newcomer, and accommodates everyone else as well (though
inconveniencing them by the move).

Now suppose infinitely many new guests arrive, sweaty and
short-tempered. No problem. The unflappable manager moves the
occupant of room 1 to room 2, room 2 to room 4, room 3 to room 6, and
so on. This doubling trick opens up all the odd-numbered
rooms—infinitely many of them—for the new guests.
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Sets of different infinite sizes (1).

Since N and Q have the same size, maybe, there are no different
infinite sizes? I.e., if X and Y are infinite, then there is a
one-to-one correspondence between them?

The answer to this question is negative:

Consider the set of infinite 0-1-sequences, e.g.,

01001010101110010101000101101010111000101...

and call it C.

This set is clearly infinite, but we shall see that this set cannot be
in one-to-one correspondence with the natural numbers.
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Sets of different infinite sizes (2).

Theorem (Cantor). The set of natural numbers N is smaller than
the set of infinite 0-1-sequences C.

Proof. Suppose that there is a function that assigns to each natural number n a
0-1-sequence sn.

s0 0 1 1 1 0 0 1 0 · · ·

s1 1 1 0 1 1 0 0 0 · · ·

s2 0 0 1 1 1 0 1 1 · · ·

s3 1 0 0 0 0 0 0 0 · · ·

s4 1 1 1 1 0 0 1 0 · · ·

s5 0 0 0 0 1 1 1 0 · · ·
.
.
.

We shall show that there must be some sequence d that is not in correspondence with
any natural number. Define the ith digit of d by looking up the ith digit of si and
flipping it, i.e., d(i) := 1− si (i).

d = 100110...

If d = se for some e, then se(e) = d(e) = 1− se(e), but that is absurd. So d is not in
correspondence with any natural number. q.e.d.
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.

We shall show that there must be some sequence d that is not in correspondence with
any natural number.

Define the ith digit of d by looking up the ith digit of si and
flipping it, i.e., d(i) := 1− si (i).

d = 100110...

If d = se for some e, then se(e) = d(e) = 1− se(e), but that is absurd. So d is not in
correspondence with any natural number. q.e.d.
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Sets of different infinite sizes (3).

Infinite sets that are not of the same size as N are called
uncountable.

Cantor also proved: The set of real numbers R is uncountable.

But that raises a very natural question:

Are there sets A ⊆ R that are strictly bigger than the set
of natural numbers and strictly smaller than the set of
real numbers?

(Equivalently: “Is the size of the set R the smallest uncountable
infinity?”)

The Continuum Problem
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century at the International Congress of Mathematicians in Paris:
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Ignoramus et ignorabimus (1).

Emil du Bois-Reymond
(1818–1896)

Emil du Bois-Reymond, Über die Grenzen des Naturerkennens, 1872

“Wir dürfen nicht denen glauben, die heute mit philoso-
phischer Miene und überlegenem Tone den Kulturuntergang
prophezeien und sich in dem Ignorabimus gefallen. Für uns
gibt es kein Ignorabimus, und meiner Meinung nach auch für
die Naturwissenschaft überhaupt nicht. Statt des törichten
Ignorabimus heisse im Gegenteil unsere Losung: Wir müssen
wissen, Wir werden wissen.”

(D. Hilbert, Radio Address, 8 September 1930)
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Ignoramus et ignorabimus (2).

The Continuum Problem. Are there sets A ⊆ R that are strictly bigger than the set of natural numbers and
strictly smaller than the set of real numbers?

Kurt Gödel (1906-1978)

Theorem (1938). It is not possible to
prove the existence of such a set A.

Paul Cohen (1934-2007)

Theorem (1962). It is not possible to
refute the existence of such a set A.
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Ignorabimus?

Possible answers:

I There is a fundamental problem with infinity.

I Our notions of “proving” and “refuting” are deficient: we need to come up with
stronger foundations of mathematics that allow us to settle the continuum
problem.

I Du Bois-Raymond was right, ignorabimus: there are fundamental limits to the
deductive method.

I Mathematical logic should study those statements that are neither provable nor
refutable.
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